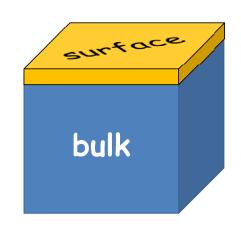
3. Surface Analysis

- Introduction
- Methods: XPS, AES, RBS
- TOF-SIMS

Experimental Methods in Physics

Marco Cantoni


Why surface Analysis...?

Bulk:

structural function Electrical/thermal conduction Volume increases properties

Surface:

Interface solid-gas: surface chemistry (solid-oxide fuel cells, catalysers, corrosion)
Surface mechanics (solid-solid), tribology
Functionality: optics, biomaterials, bio-chemistry

1 monolayer = density: 1015 atoms /cm2

nanotechnology

size	0.5nm	1nm	1.5nm	1um
# volume atoms	1	5	27	2.7×10^{10}
# of surface atoms	8	26	56	5.4 ×10 ⁷
surface fraction	8	5.2	2.07	0.002


The smaller the particle the more dominant becomes the surface

Experimental Methods in Physics

Marco Cantoni

How analyse a surface...? methods of surface analysis

methods matrix

Primary particle	Secondary particle			
	hv	electron	ion	atom
hv	ELL, ESR, FTIR, NMR, Raman, XRD, SNOM	XPS UPS, XPD	LAMMA MALDI	
e	EDX	AUGER, EELS, LEED, RHEED, SEM		
i +/-	PIXE, GDOES		GDMS SIMS ISS, RBS	
α				FAB He SC

Experimental Methods in Physics

Marco Cantoni

acronyms

- · ELL: Ellipsometry
- · ESR: Electron Spin Resonance
- FTIR: Fourier Transform Infrared Spectroscopy
- NMR: Nuclear Magnetic Resonance
- · Raman Spectroscopy
- · XRD: X-ray Diffraction
- · XPS: X-ray Photoelectron Spectroscopy
- · UPS: Ultraviolet Spectroscopy
- · XPD: X-ray Photoelectron Diffraction
- · LAMMA: Laser Microprobe Mass Analysis
- · MALDI Matrix Assisted Laser Desorption Ionization
- EL: Electron Microprobe
- · AES: Auger Electron Spectroscopy
- · EELS: Electron Energy Loss Spectroscopy
- · LEED: Low Energy Electron Diffraction
- · RHEED: Reflection High Energy Electron Diffraction
- · SEM: Scanning Electron Microscopy
- PIXE: Proton Induced X-ray Emission
- · GDOES: Glow discharge Optical Emission Spectroscopy
- · GDMS: Glow Discharge Mass spectroscopy
- SIMS: Secondary Ion Mass Spectroscopy
- ISS Ion Scattering Spectroscopy
- · RBS: Rutherford Back Scattering
- FAB: Fast Atom Bombardment
- · He Sc: Helium Scattering

Surface analysis: under vacuum!

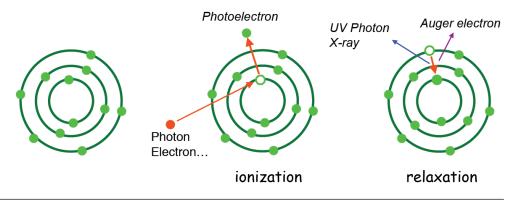
- Surface has to remain in the same state during the measurement
 - temperature
 - stability
 - contamination (formation of monolayer 10¹⁹ site/m²)
- Exception:

 Photons (optical microscopy)
 Force measurements: AFM Liquid-solid interfaces

- Excitation/detection with particles 10-4 mbar or better
- To avoid contaminants: 10⁻¹⁰ mbar

Common problems and solutions outgassing, leaks, hydrocarbons Heating at 150°C, cold traps UHV systems..!

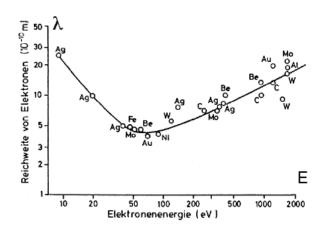
Experimental Methods in Physics

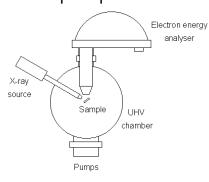

Marco Cantoni

photon and electron probes

elemental and electronic analysis

- Electron transition between atomic energy levels
 - Core electrons: binding energy depends on the element
 - Excitation/ionisation by a probe particle (photon, electron, ion, ...)
 - Photoelectron
 - After relaxation: X-ray, Auger electron, ...
 - | Energy of interaction product is characteristic of the element




photon and electron probes

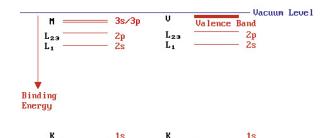
elemental and electronic analysis

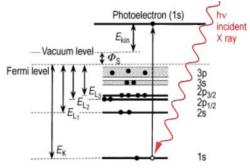
Range of low energy electrons

Electron energy analyser principle

Experimental Methods in Physics

Marco Cantoni

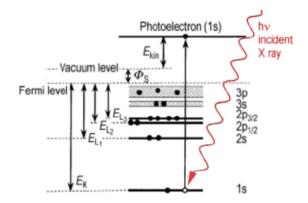



X-ray Photoelectron Spectroscopy XPS

Principle

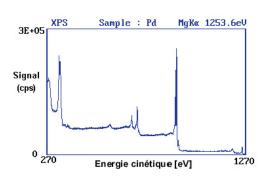
- Excitation of core or valence electrons
- Energy-dispersive analysis of emitted photoelectrons
- Core levels
- Binding energy: 200 eV - a few keV
- Excitation: X-rays (or UV)
- Set of lines characteristic for each element
- Valence levels
 - Binding energy: a few eV
 - Excitation: UV light
 - Reflects the electronic properties of

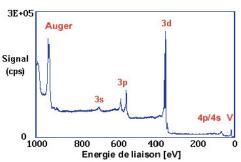
the surface



Photoelectron spectrum

- Analysis as a function of electron energy
 - I Kinetic energy E_{kin} allows to determine the binding energy E_{B}
 - $\mathbf{E}_{kin} = \mathbf{h}v \mathbf{E}_{B} \mathbf{\Phi}_{s}$
 - | φ_s: work function
 - In practice, spectrum calibrated with a well-known energy peak (C, O, ...)


Experimental Methods in Physics


Marco Cantoni

Photoelectron spectroscopy

- Kinetic energy E_{kin} depends on binding energy E_B
 - Atom + $hv \rightarrow Atom^+ + e^-$
 - $E(A) + hv = E(A^{+}) + E_{kin}(e^{-})$
 - $E_{kin}(e^{-}) = hv [E(A^{+}) E(A)]$
 - E_{kin}(e⁻): kinetic energy of photoelectron
 - [E(A⁺) E(A)]: binding energy of electron
 - One-electron process
 ("photon in electron out")

Photoelectron spectroscopy chemical shift

- Shift of peak energy provoked by chemical environment and oxidation state
 - I Typ. 0.5-10 eV
- Allows to determine
 - Oxidation state of metallic elements
 - Nature of chemical bond e.g. for
 - C (C-H, C-O, C-F, ...)
 - O (O²⁻, OH, ...)
 - Si (metallic, SiO₂, silicones)

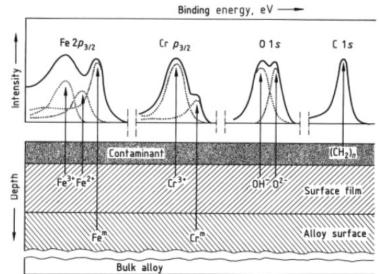
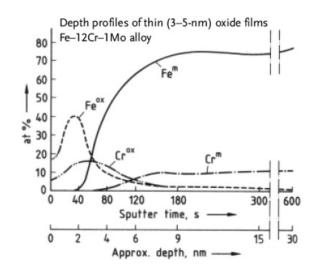
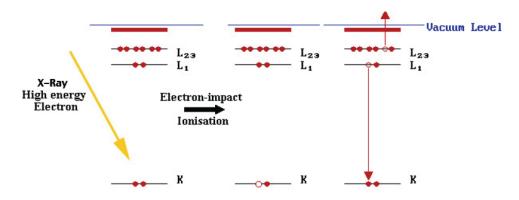


Fig. 2.13. Schematic diagram of the type of information obtainable from XPS spectra from an Fe–Cr alloy with oxide film underneath a contaminant film [2.57].


Experimental Methods in Physics

Marco Cantoni

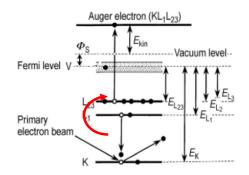
Photoelectron spectroscopy depth profile

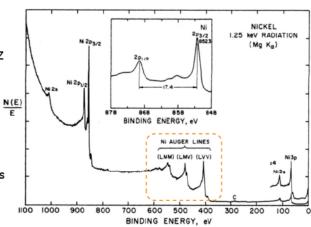

- XPS sensitive to surface (~5nm)
- Depth profile measurement by sputtering the sample
 - Cycles of ion beam etching (Ar+) followed by measurement
- Max. depth: ~1 µm
 - Degradation of sample due to ion bombardment
 - Atomic displacement
 - Surface roughness
 - | Variable etching rates

Waves: electrons AES: Auger electron spectroscopy

- Excitation of core electrons with electrons or X-rays
- Relaxation of an electron
 - X-ray emission
 - Auger emission: energy transfer to a second electron
- I Kinetic energy determined by
 - I Position of "initial" hole
 - Position of two "final" holes
 - Characteristic for each element
- I Analysis of electron energy

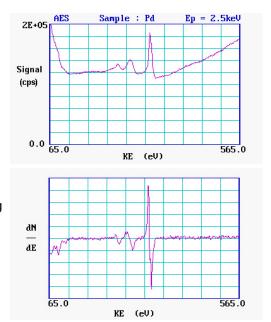
Experimental Methods in Physics


Marco Cantoni



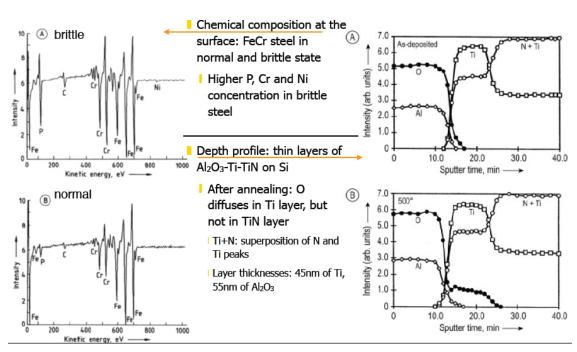
Auger Emission

- Secondary process
 - Competition between X-ray fluorescence and Auger emission
 - Auger emission favoured of shallow core levels: light elements
 - Auger electron XYZ
 - Initial hole: X
 - Relaxation of electron Y
 - Energy transferred to another electron Z that is emitted by the solid:


 Auger emission
 - For example: (KL₁L₂₃)
 - Energy Ekin(XYZ)
 - $E_{kin}(XYZ) = (E_X-E_Y)-E_Z-E_{inter}$
 - · Independent of probe particle energy
 - E_{Inter}: interaction energy between holes L₁ and L₂₃; relaxation energy, ... E_{Inter} << E_{kin}(XYZ) (typ. 1 eV)

Auger spectrum

- Many transitions
 - Strong background signal (low energy secondary electrons)
 - Usually, 1st derivative of detected electron current for graphs/analysis
 - High surface sensitivity
 - Kinetic energy between 20...1000 eV (λ between 2...6 monolayers)
 - Mapping by rastering an electron beam Resolution ≈ 50 nm
 - Depth concentration profiles by sputtering the surface
 - Faster acquisition than XPS
 - Quantitative analysis with composition standards
 - Chemical effects difficult to interpret



Experimental Methods in Physics

Marco Cantoni

AES examples

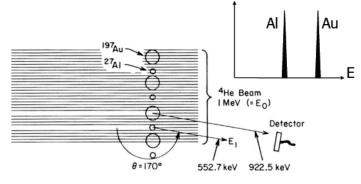
XPS and AES

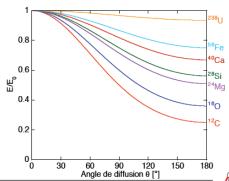
Infos	XPS	AES
Quantification	Yes	Yes light elements!
Chemical bond	Yes	Possible
Electronic structure	Yes	-
Mapping	Possible (50 nm?)	SEM (50 nm)
Depth profiles	Yes (Ar ⁺ sputtering)	Yes (Ar ⁺ sputtering)
Surface sensitivity	some nm	some nm
Detection limit	~‰	~%
Vacuum	UHV needed	UHV needed

Experimental Methods in Physics

Marco Cantoni

Particles: Ions (alpha-particles) Rutherford Backscattering Spectroscopy (RBS)


- Bombardment of surface with α particles
- Analysis of energy of backscattered particles
- I Thin sample
 - "Elastic collisions" with atoms of mass m₂

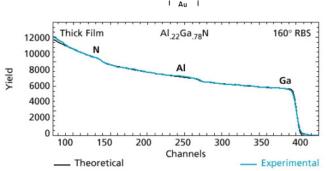

$$\frac{E_1}{E_0} = K = \left[\frac{(M_2^2 - M_1^2 \sin^2 \theta)^{1/2} + M_1 \cos \theta}{M_2 + M_1} \right]^2$$

Backscattering geometry (θ=180°)

$$\frac{E_1}{E_0} = \left(\frac{M_2 - M_1}{M_2 + M_1}\right)^2$$

- Maximum sensitivity to chemical composition
- Peak at well-defined energy E1

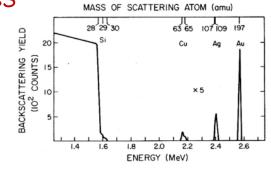
CIMe


Particles: Ions **RBS**

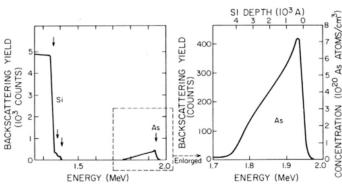
Au

- Thick sample
 - Inelastic collision before elastic backscattering
 - Continuous spectrum with cut-off energy E1
 - Several elements: superposition of spectra for each element

- Example
 - Thick film of AlGaN (e.g. blue-emission laser diodes)


Experimental Methods in Physics

Marco Cantoni


Particles: Ions **RBS**

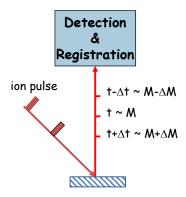
- Surface impurities on Si
- Isotopes are resolved for light elements
- Area of each peak proportional to concentration and scattering cross-section

- Example 2
 - Diffusion of As in Si
 - Depth resolution of 10 nm
 - Ideal cases...

Particles: Ions RBS

- Advantages
 - Fast, quantitative method, no need for standards
 - Depth profiling possible without ablation
 - Good resolution in mass for light elements
 - Good sensitivity to heavy elements
 - High sensitivity to crystallographic defects
- Drawbacks
 - Particle accelerator needed
 - Irradiation defects (1013 He atoms implanted per measurement)

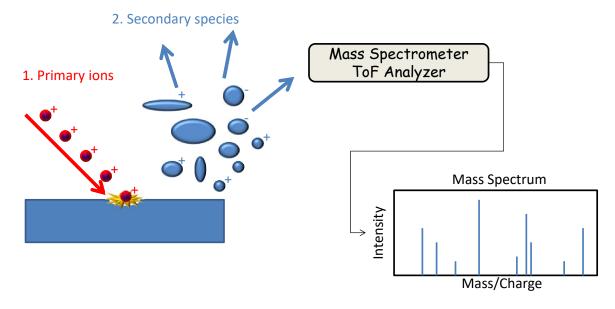
Experimental Methods in Physics


Marco Cantoni

Time-of-Flight Secondary Ion Mass Spectrometry ToF-SIMS

Analyse de Surface (V. Laporte)

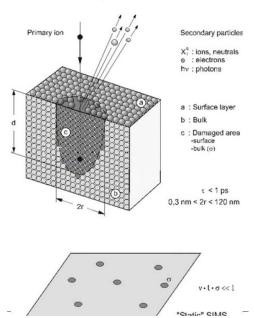
Outline


- ToF-SIMS basics
- ToF-SIMS for Surface Analysis
- ToF-SIMS for depth profiling

Experimental Methods in Physics

Marco Cantoni

ToF-SIMS principle



Surface sensitive if the static limit is not exceeded

The « static » limit

The concept of Static SIMS

In the static mode, less than 1% of the surface is struck by incoming primary ions i.e. the dose of primary ions is less than 10¹³ ions/cm².

Benninghoven, ToF-SIMS: Surface Analysis by Mass Spectrometry Surface Spectra - IMPublications 2001

Experimental Methods in Physics

Marco Cantoni

A complex process!

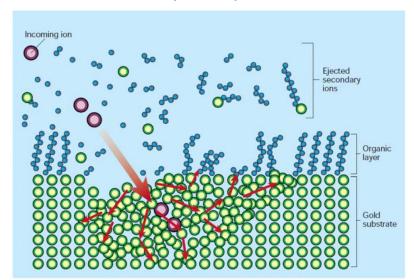
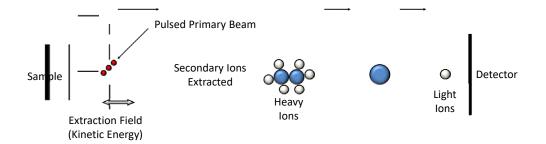
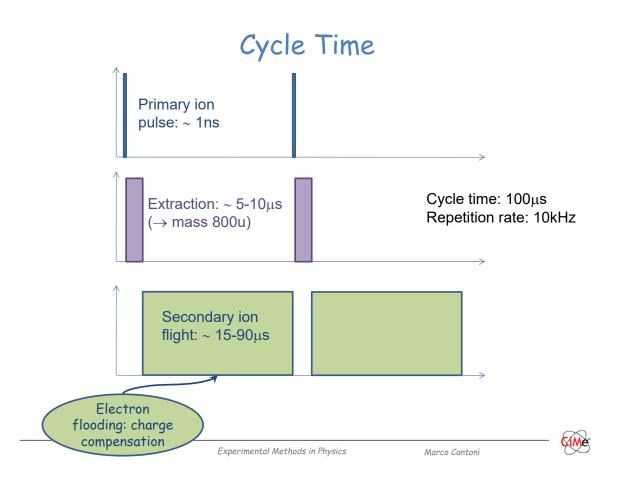



Figure 1 Surface analysis using secondary-ion mass spectrometry (SIMS). In this example, ions are fired into an organic self-assembled monolayer on a gold substrate. The energy deposited in the surface region from the incoming primary ions produces a collision cascade. This results in the ejection of a wide range of atomic and molecular fragments, of which about 1% are ions. Mass analysis of the ejected secondary ions is the key to exploring the structure of the surface.

Castner, Nature 2003

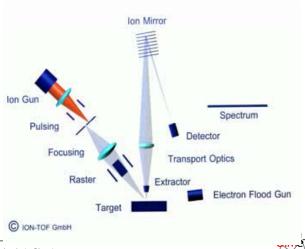
ToF Analyzer

- (1) Each pulse of primary ions creates a pulse of secondary ions.
- (2) Secondaries of different masses within a single 'cycle' arrive at the detector at different times according to the relation:

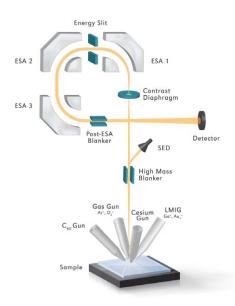

K.E. =
$$mv^2/2 \rightarrow m \propto t^2$$

(3) Secondary ion with m/z = 1,000 has flight time ~100 μ s, therefore 'cycle time' = 100 μ s, so typical pulsing frequency = 10kHz.

Experimental Methods in Physics


Marco Cantoni

ION-TOF Instrument



Experimental Methods in Physics

Marco Cantoni

PHI instrument

Quantification

• The SIMS basic equation: $I_m = I_p Y_m \alpha^{\pm} \theta_m \eta$ Secondary ion current of species mPrimary particle flux (1-10pA)

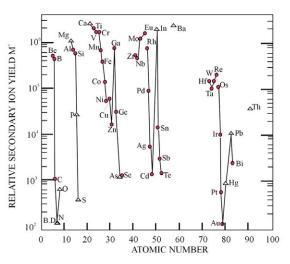
Sputter yield

Ionisation probability

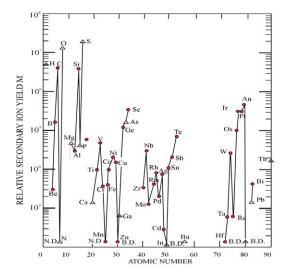
Fractional concentration of m in the surface layer

Transmission of the analysis system

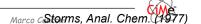
Secondary ion yield


Need for internal standards

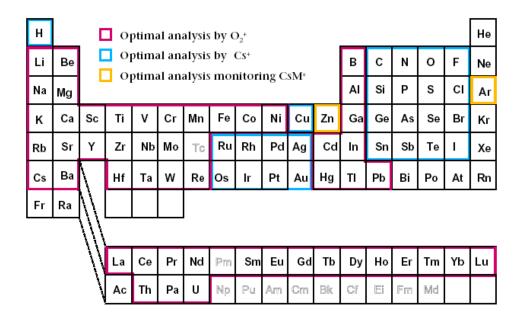
Experimental Methods in Physics


Marco Cantoni

Relative secondary ion yield



13.5keV oxygen ion gun positive mode



16.5keV caesium ion gun negative mode

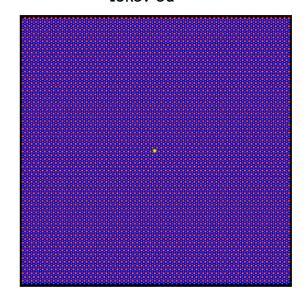
+MATRIX EFFECTS!

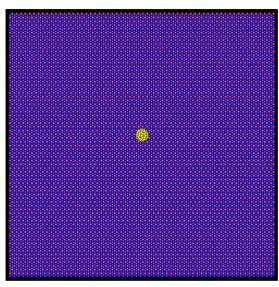
General rules

Experimental Methods in Physics

Marco Cantoni

Recent Developments


- Ion guns:
 - LMIG (Bi, Au)
 - Lateral resolution
 - · Imaging
 - Cluster ion guns (C_{60} , Ar_{2500})
 - · Ion yields
 - · Damage in organics
- Data treatment
 - Chemometrics (PCA)

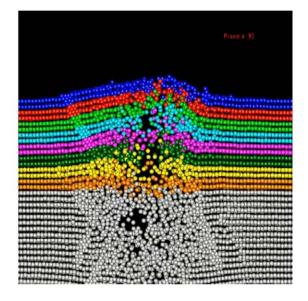


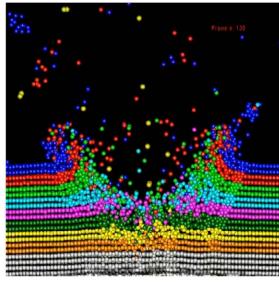
MD simulations

15keV Ga

Courtesy of Pr. B. Garrison, Penn State University

Experimental Methods in Physics


Marco Cantoni



MD simulations

15keV Ga

15keV C60

Courtesy of Pr. B. Garrison, Penn State University

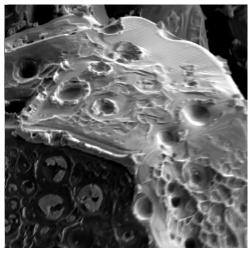
ToF advantages

- Parallel mass detection
- · High (unlimited) mass range
- High mass resolution > 10 000
- High mass accuracy (1-10 ppm)
- High transmission for high masses and at high mass resolution
- All elements and isotopes
- Molecular species
- High sensitivity (ppm, 10¹⁶at/cm³)
- High lateral (100 nm) resolution

Experimental Methods in Physics

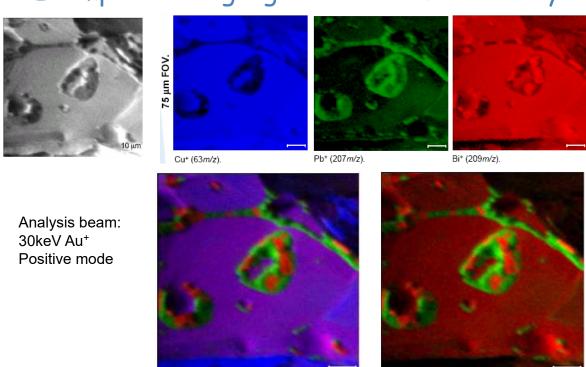
Marco Cantoni

ToF-SIMS for Surface Analysis


- Historical surface science fields: corrosion, oxidation, adsorption, catalysis, biocompatibility, ...
- New fields: optics, photonics, organics, surface functionalization...
- Examples:
 - Segregation in a metallic alloy
 - Cleaning of Surfaces (Tascon examples)
 - Tribology
 - Organic materials
 - · Polymer thin film
 - · Forensic science
 - Biology

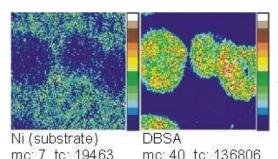
ToF-SIMS for surface analysis Example #1: segregation in a Cu-PbBi alloy

Cu-0.5Pb0.5Bi alloy, tensile fractured under UHV for Auger analyses Polycrystalline fracture surface Auger analyses $\rightarrow \sim 1$ ML of Bi


Experimental Methods in Physics

Marco Cantoni

Bi* (209m/z); Pb* (207m/z)



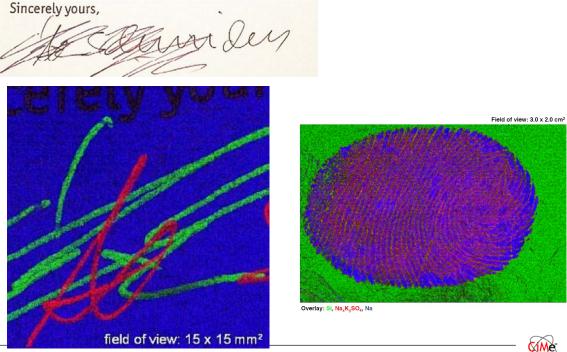
ToF-SIMS for surface analysis Example #1: segregation in a Cu-PbBi alloy

Bi+ (209m/z); Pb+ (207m/z); Cu+ (63m/z).

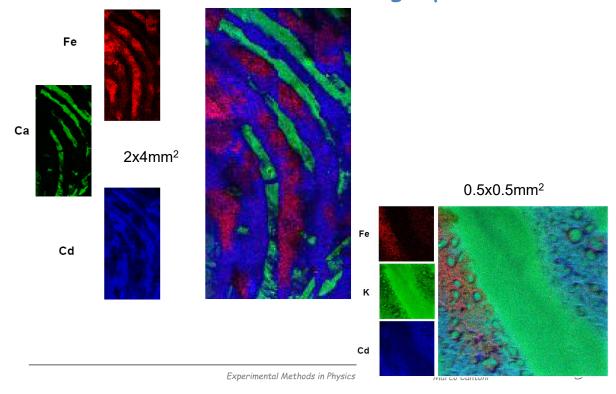
ToF-SIMS for surface analysis Example #2: Cleaning of Surfaces

Despite a thorough degreasing step and a subsequent plasma cleaning treatment, adhesion problems occurred on a **nickel** surface.

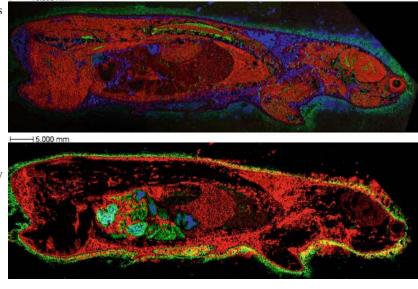
ToF-SIMS analysis showed the presence of dodecylbenzenesulphonic acid (DBSA) on the surface of the cleaned metal.


This chemical was identified as a component of the used **cleaning agent** and was not removed completely from the metal surface due to **insufficient rinsing**. A subsequent plasma cleaning step did not lead to a complete removal of the DBSA layer either, which led to adhesive failure in the next process step. Based on these analytical results, the final cleaning of the nickel plate could be improved and the failure rate due to adhesive failure could be reduced considerably.

Experimental Methods in Physics


Marco Cantoni

ToF-SIMS for surface analysis of organics Forensic Science



ToF-SIMS for surface analysis of organics Forensic Science, Fingerprints

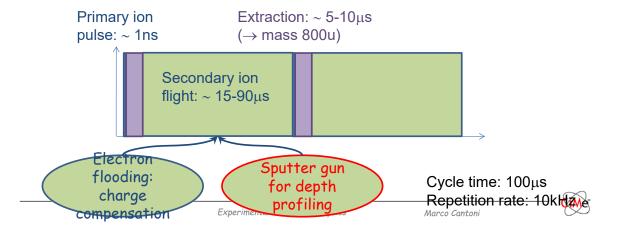
ToF-SIMS for surface analysis of organics Biology: lipid imaging

Fig. 4 TOF-SIMS images (three-color overlays) of a whole mouse section. Field of view 28×84 mm², 768×256 pixels, pixel size 109 µm, Bi₃⁺ primary ion fluence 6× 10⁸ ions cm⁻². a Positive secondary ions: red phosphatidylcholine fragment (m/z 224); green cholesterol (m/z 369 and 385); blue diacylglycerol (m/z 577). b Negative secondary ions: red sum of stearic (m/z 255) and oleic (m/z 281)fatty acid carboxylates; green cholesterol sulfate (m/z 465); blue taurocholic acid carboxylate (m/z 514)

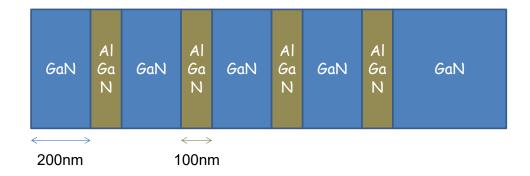
Brunelle, Anal. Bioanal. Chem. (2009)

ToF-SIMS for Surface Analysis Conclusions

- Complementary with Auger and XPS analyses
 - Better lateral resolution than XPS for insulating samples
 - Better sensitivity than Auger and XPS
 - Larger imaging capabilities than Auger with mosaic reconstruction
 - Efficient for light elements
 - Less quantitative data
- · Additional features for organic samples
 - Molecular information
 - More efficient neutralization



Experimental Methods in Physics

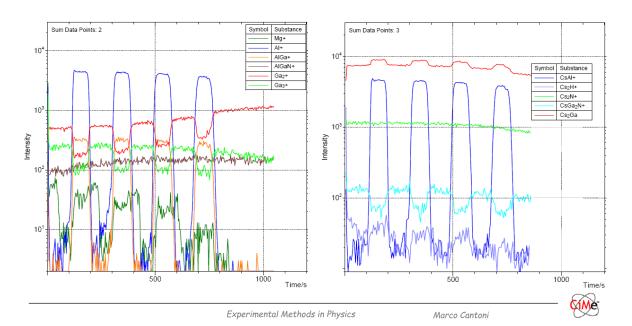

Marco Cantoni

Dynamic mode

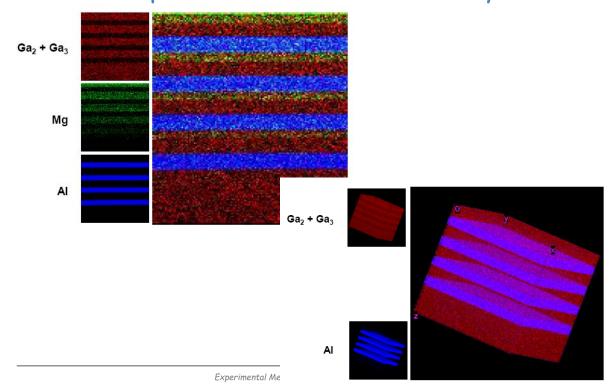
- Dynamic SIMS: sputter depth profiling with DC beam and a continuous collection of sputtered ions
- Dual-beam mode for ToF-SIMS depth profiling:

ToF-SIMS for Depth profiling Example #1: GaN/AlGaN multilayer

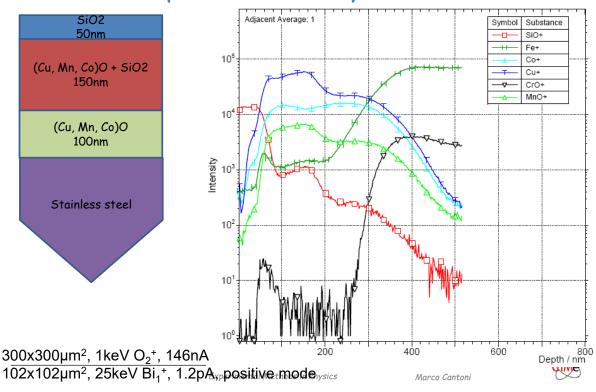
Mg doping in AlGaN layers

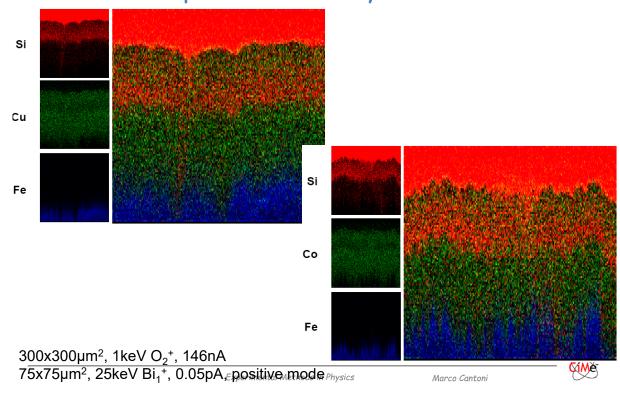

Experimental Methods in Physics

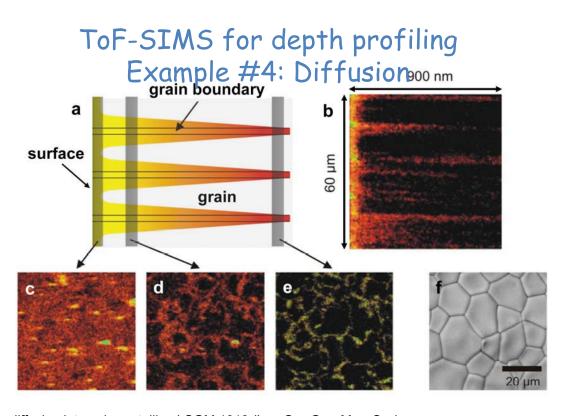
Marco Cantoni



ToF-SIMS for Depth profiling Example #1: GaN/AlGaN multilayer


 $300x300\mu m^2$, 2keV **Cs**+, 162nA $101x101\mu m^2$, 25keV Bi₃+, 0.8pA, positive mode


ToF-SIMS for Depth profiling Example #1: GaN/AlGaN multilayer



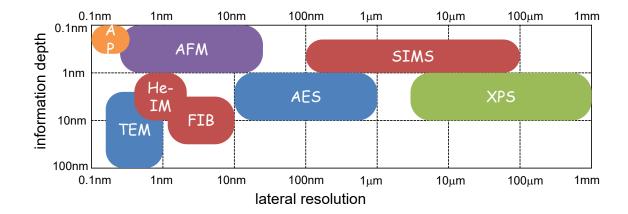
ToF-SIMS for Depth profiling Example #2: multilayer on steel

ToF-SIMS for Depth profiling Example #2: multilayer on steel

Fe diffusion into polycrystalline LSGM 1010 (La_{0.1}Sr_{0.1}Ga_{0.1}Mg_{0.1}O_{2.9})

Conclusions

	no sample erosion (static SIMS)	sample erosion (dynamic SIMS)
no localization	surface spectrometry application of low primary ion dose densities ⇒ quasi non-destructive surface analysis	depth profiling application of high primary ion dose densities ⇒ successive removal of top surface layers depth distribution of elements → → → → → → → → → → → → → → → → → → →
localization	surface imaging scanning of a focused ion beam over the surface ⇒ mass resolved secondary ion images (chemical maps)	3D micro analysis combination of depth profiling and imaging acquisition of raw data with subsequent retrospective evaluation ⇒ 3D distribution of elements in a volume


Complementary with XPS and Auger

Experimental Methods in Physics

Marco Cantoni

Summary

